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I. INTRODUCTION AND STATEMENT OF RESULTS 
In the literature we find a large number of published research papers concerning  the number of  zeros 

of a polynomial in a given circle. For the class of polynomials with real coefficients, Q. G. Mohammad [5] 

proved the following result: 
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Bidkham an d Dewan [1] generalized Theorem A in the following way: 

Theorem B: Let 
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Ebadian et al [2] generalized the above results by proving the following  

results: 

Theorem C: Let 
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ABSTRACT: 
In this paper we consider some polynomials having no zeros in a given region. Our results when 

combined with some known results give ring –shaped regions containing a specific number of zeros of 

the polynomial. 
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M.H.Gulzar [3] generalized the above result by proving the following result: 

Theorem D: Let 
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In this paper we prove the following result: 

Theorem 1: Let 
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 Combining Theorem 1 with Theorem D, we get the following result: 

Theorem 2: Let 
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where  1M  and 2M are as given in Theorem 1. 

        For different values of the parameters, we get many interesting results including some already known 

results. 

2. Proofs of Theorems 

Proof of Theorem 1: Consider the polynomial 

     F(z) =(1-z)P(z)   
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For Rz  , we have, by  using the hypothesis      
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Since G(z) is analytic in Rz  and G(0)=0, it follows by Schwarz Lemma that 

zMzG 1)(   for 1R and zMzG 2)(   for 1R . 

Hence, for 1R , 

)()( 0 zGazF   

           

0

)(

10

0







zMa

zGa
 

if 

    

1

0

M

a
z  . 

And for 1R , 

)()( 0 zGazF   

           

0

)(

20

0







zMa

zGa

 

if 

    

2

0

M

a
z  . 

This shows that F(z) has no zero in 
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P(z) are also the zeros of F(z). Therefore, the result follows. 
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